TEMA: 0161

COD PREG:
PREG20080530

OPCION A:
OPCION B:
OPCION C:

COMMERCIAL PILOT - (CH. 9) NAVIGATION

PREGUNTA:

RPTA:
The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 090° to 100° in 2.5 minutes of elapsed time. If the true airspeed is 90 knots, th distance and time en route to that radiobeacon would be
15 miles and 22.5 minutes.
22.5 miles and 15 minutes.

32 miles and 18 minutes.

PREG20080531 GIVEN: A
Wingtip bearing change .. 10°
Elapsed time between bearing change 4 min
Rate of fuel consumption $11 \mathrm{gal} / \mathrm{hr}$

Calculate the fuel required to fly to the station.
OPCION A: $\quad 4.4$ gallons.
OPCION B: $\quad 8.4$ gallons.
OPCION C: 12 gallons.
PREG20080534 GIVEN: A
Wingtip bearing change .. 15°
Elapsed time between bearing change 7.5 min
True airspeed .. 85 kts
Rate of fuel consumption $9.6 \mathrm{gal} / \mathrm{hr}$
The time, distance, and fuel required to fly to the station is
OPCION A: $\quad 30$ minutes; 42.5 miles; 4.80 gallons.
OPCION B: $\quad 32$ minutes; 48 miles; 5.58 gallons.
OPCION C: 48 minutes; 48 miles; 4.58 gallons.

PREG20080533 GIVEN:
A

Wingtip bearing change ... 15°
Elapsed time between bearing change 6 min
Rate of fuel consumption $8.6 \mathrm{gal} / \mathrm{hr}$
Calculate the approximate fuel required to fly to the station.
OPCION A: $\quad 3.44$ gallons.
OPCION B: $\quad 6.88$ gallons.
OPCION C: $\quad 17.84$ gallons.

OPCION A: $\quad 3$ minutes.
OPCION B: 6 minutes.
OPCION C: 12 minutes.

PREG20080529 If the relative bearing changes from 090° to 100° in 2.5 minutes of elapsed time, the time en route to that station would be
OPCION A: 12 minutes.
OPCION B: 15 minutes.
OPCION C: 18 minutes.

PREG20080532 GIVEN: B
Wingtip bearing change ... 5°
Elapsed time between bearing change 6 min
Rate of fuel consumption $12 \mathrm{gal} / \mathrm{hr}$
The fuel required to fly to the station is
OPCION A: 8.2 gallons.
OPCION B: 14.4 gallons.
OPCION C: 18.7 gallons.

PREG20080528	The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 085° to 090° in 2 minutes of elapsed time. The time en route to that station would be
OPCION A: 15 minutes. OPCION B: 18 minutes. OPCION C: 24 minutes.	

PREG20080519	Ref. Fig. 18
	If the airplane continues to fly on the heading as shown, what magnetic bearing FROM the station would be intercepted at a 35° angle outbound?
OPCION A:	035°.
OPCION B:	070°.
OPCION C:	215°.

| PREG20080526 | The ADF is tuned to a nondirectional radiobeacon and the relative
 bearing changes from 095° to 100° in 1.5 minutes of elapsed time. The
 time en route to that station would be |
| :--- | :--- |\quad A

PREG20080525 GIVEN: C
Wingtip bearing change 5°
Time elapsed between bearing change 5 min
True airspeed 115 kts
The distance to the station is
OPCION A: 36 NM.
OPCION B: 57.5 NM .
OPCION C: 115 NM.
PREG20080524 With a TAS of 115 knots, the relative bearing on an ADF changes from C 090° to 095° in 1.5 minutes of elapsed time. The distance to the station would be

OPCION A: $\quad 12.5 \mathrm{NM}$.
OPCION C: 34.5 NM .
PREG20080523 The ADF indicates a wingtip bearing change of 10° in 2 minutes of B elapsed time, and the TAS is 160 knots. What is the distance to the station?
OPCION A: 15 NM.
OPCION B: 32 NM.
OPCION C: 36 NM.
PREG20080522 The relative bearing on an ADF changes from 265° to 260° in two (2) C minutes of elapsed time. If the groundspeed is 145 knots, the distance to that station would be:
OPCION A: 26 NM.
OPCION B: 37 NM.
OPCION C: 58 NM .
PREG20080516 Ref Fig. 17 A
Which illustration indicates that the airplane should be turned 150° left to intercept the 360 radial at a 60° angle inbound?
OPCION A: 1.
OPCION B: 2.
OPCION C: 3.
PREG20080494 GIVEN: B
True course 345°
True heading 355°
True airspeed 85 kts
Groundspeed 95 ktsDetermine the wind direction and speed.

OPCION A: $\quad 095^{\circ}$ and 19 knots.
OPCION B: $\quad 113^{\circ}$ and 19 knots.
OPCION C: $\quad 238^{\circ}$ and 18 knots.

PREG20080493 GIVEN: A
True course ... 105°
True heading .. 085°
True airspeed .. 95 kts
Groundspeed ... 87 kts
Determine the wind direction and speed.
OPCION A: $\quad 020^{\circ}$ and 32 knots.
OPCION B: $\quad 030^{\circ}$ and 38 knots.
OPCION C: $\quad 200^{\circ}$ and 32 knots.

PREG20080492	If fuel consumption is 14.7 gallons per hour and groundspeed is 157 knots, how much fuel is required for an airplane to travel 612 NM?	A
OPCION A:	58 gallons.	
OPCION B:	60 gallons.	
OPCION C:	64 gallons.	

PREG20080491	If an airplane is consuming 14.8 pounds of fuel per hour at a cruising altitude of 7,500 feet and the groundspeed is 167 knots, how much fuel is required to travel 560 NM ?
OPCION A:	50 gallons.
OPCION B:	53 gallons.
OPCION C:	57 gallons.

PREG20080490	If an airplane is consuming 9.5 gallons of fuel per hour at a cruising altitude of 6,000 feet and the groundspeed is 135 knots, how much fuel is required to travel 490 NM?
OPCION A:	27 gallons.
OPCION B:	30 gallons.
OPCION C:	35 gallons.

| PREG20080488 | If an airplane is consuming 95 pounds of fuel per hour at a cruising
 altitude of 6,500 feet and the groundspeed is 173 knots, how much fuel
 is required to travel 450 NM? |
| :--- | :--- |\quad A

OPCION B: 212 pounds.
OPCION C: $\quad 460$ pounds.

PREG20080484 An airplane descends to an airport under the following conditions:
\qquad
Airport elevation .. 700 ft
Descends to .. 800 ft AGL
Rate of descent .. $500 \mathrm{ft} / \mathrm{min}$
Average true airspeed ... 110 kts
True course .. 335º
Average wind velocity ... 060° at 15 kts
Variation .. $3^{\circ} \mathrm{W}$
Deviation .. 2°
Average fuel consumption .. $8.5 \mathrm{gal} / \mathrm{hr}$
Determine the approximate time, compass heading, distance, and fuel consumed during the descent.
OPCION A: $\quad 10$ minutes, $348^{\circ}, 18 \mathrm{NM}, 1.4$ gallons.
OPCION B: $\quad 10$ minutes, $355^{\circ}, 17 \mathrm{NM}, 2.4$ gallons.
OPCION C: $\quad 12$ minutes, $346^{\circ}, 18 \mathrm{NM}, 1.6$ gallons.

PREG20080483 GIVEN: B
Pressure altitude .. 7,000 ft
True air temperature ... $+15^{\circ} \mathrm{C}$
From the conditions given, the approximate density altitude is
OPCION A: $\quad 5,000$ feet.
OPCION B: $\quad 8,500$ feet.
OPCION C: 9,500 feet.

PREG20080482	GIVEN:	B
	Pressure altitude .. 6,000 ft	
	True air temperature ... $+30^{\circ} \mathrm{F}$	
	From the conditions given, the approximate density altitude is	
OPCION A:	9,000 feet.	
OPCION B:	5,500 feet.	
OPCION C:	5,000 feet.	

PREG20080481	GIVEN:
	Pressure altitude .. 5,000 ft
	True air temperature ... $+30^{\circ} \mathrm{C}$
	From the conditions given, the approximate density altitude is
OPCION A:	7,200 feet.
OPCION B:	7,800 feet.
OPCION C:	9,000 feet.

PREG20080480	GIVEN:
	Pressure altitude ... 12,000 ft
	True air temperature ... $+50^{\circ} \mathrm{F}$
	From the conditions given, the approximate density altitude is
OPCION A:	11,900 feet.
OPCION B:	14,130 feet.
OPCION C:	18,150 feet.

PREG20080479	Which data must be recorded in the aircraft logbook or other record by a pilot making a VOR operational check for IFR operations? VOR name or identification, place of operational check, amount of bearing error, and date of check.	B
OPCION A:	Date of check, place of operational check, bearing error, and signature. VOR name or identification, amount of bearing error, date of check, and signature.	
OPCION B:		

PREG20080478	When must an operational check on the aircraft VOR equipment be accomplished to operate under IFR? Within the preceding	C
OPCION A:	30 days or 30 hours of flight time.	
OPCION B:	10 days or 10 hours of flight time.	
OPCION C:	30 days.	

OPCION A: 4 degrees
OPCION B: 8 degrees
OPCION C: 12 degrees

PREG20080521	Ref. Fig. 19 If the airplane continues to fly on the magnetic heading as illustrated, what magnetic bearing FROM the station would be intercepted at a 30°
angle?	

PREG20080520	Ref. Fig. 19 If the airplane continues to fly on the magnetic heading as illustrated, what magnetic bearing FROM the station would be intercepted at a 35°
angle?	
OPCION A:	090°.
OPCION B:	270°.
OPCION C:	305°.

PREG20080536	While maintaining a constant heading, the ADF needle increases from a relative bearing of 45° to 090° in 5 minutes. The time to the station being used is
OPCION A:	5 minutes.
OPCION B:	10 minutes.
OPCION C:	15 minutes.

PREG20080527	The ADF is tuned to a nondirectional radiobeacon and the relative bearing changes from 270° to 265° in 2.5 minutes of elapsed time. The time en route to that beacon would be
OPCION A: 9 minutes. OPCION B: 18 minutes. OPCION C: 30 minutes.	

PREG20080537	While cruising at 135 knots and on a constant heading, the ADF needle decreases from a relative bearing of 315° to 270° in 7 minutes. The approximate time and distance to the station being used is
OPCION A:	7 minutes and 16 miles.
OPCION B:	14 minutes. and 28 miles.
OPCION C:	19 minutes and 38 miles.

PREG20080554 Inbound on the 190 radial, a pilot selects the 195 radial, turns 5° to the

OPCION B: 15 minutes.
OPCION C: 20 minutes.

PREG20080539	When checking the course sensitivity of a VOR receiver, how many degrees should the OBS be rotated to move the CDI from the center to the last dot on either side?	B
OPCION A:	5° to 10°.	
OPCION B:	10° to 12°.	
OPCION C:	18° to 20°.	

PREG20080557	When the CDI needle is centered during an airborne VOR check, the	B		
omnibearing selector and the TO/FROM indicator should read			\quad	within 4° of the selected radial.
:---	:---			

PREG20080556	When using VOT to make a VOR receiver check, the CDI should be centered and the OBS should indicate that the aircraft is on the
OPCION A:	090 radial.
OPCION B:	180 radial.
OPCION C:	360 radial.

PREG20080555	How should the pilot make a VOR receiver check when the aircraft is located on the designated checkpoint on the airport surface?
OPCION A:	Set the OBS on 180° plus or minus 4°; the CDI should center with a FROM indication.
OPCION B:	Set the OBS on the designated radial. The CDI must center within plus or minus 4° of that radial with a FROM indication.
OPCION C:	With the aircraft headed directly toward the VOR and the OBS set to 000°, the CDI should center within plus or minus 4° of that radial with a TO indication.

PREG20080553 Inbound on the 315 radial, a pilot selects the 320 radial, turns 5° to the left, and notes the time. While maintaining a constant heading, the pilot notes the time for the CDI to center is 12 minutes. Based on this information, the ETE to the station is
OPCION A: 10 minutes.
OPCION B: 12 minutes.
OPCION C: 24 minutes.

PREG20080552 Inbound on the 090 radial, a pilot rotates the OBS 010° to the left, turns is 8 minutes. Based on this information, the ETE to the station is
OPCION A: 8 minutes.
OPCION B: 16 minutes.

OPCION C: 24 minutes.

PREG20080551 Inbound on the 040 radial, a pilot selects the 055 radial, turns 15° to the left, and notes the time. While maintaining a constant heading, the pilot notes the time for the CDI to center is 15 minutes. Based on this information, the ETE to the station is
OPCION A: 8 minutes.
OPCION B: 15 minutes.
OPCION C: 30 minutes.

PREG20080550 Ref. Fig. 24 A
If the time flown between aircraft positions 2 and 3 is 15 minutes, what is the estimated time to the station?
OPCION A: 15 minutes.
OPCION B: $\quad 30$ minutes.
OPCION C: 60 minutes.

PREG20080549 Ref. Fig. 23
If the time flown between aircraft positions 2 and 3 is 13 minutes, what is the estimated time to the station?
OPCION A: $\quad 7.8$ minutes.
OPCION B: 13 minutes.
OPCION C: 26 minutes.

PREG20080548 Ref. Fig. 22
If the time flown between aircraft positions 2 and 3 is 8 minutes, what is the estimated time to the station?
OPCION A: 8 minutes.
OPCION B: 16 minutes.
OPCION C: 48 minutes.

PREG20080547	Ref. Fig. 21
	If the time flown between aircraft positions 2 and 3 is 13 minutes, what is the estimated time to the station?\quad A

OPCION A: 13 minutes.
OPCION B: 17 minutes.
OPCION C: 26 minutes.

PREG20080546 While maintaining a magnetic heading of 270° and a true airspeed of

PREG20080545	Ref, Fig. 20 Which instrument(s) show(s) that the aircraft is getting further from the selected VORTAC?
OPCION A:	4.
OPCION B:	1 and 4.
OPCION C:	2 and 3.

PREG20080544	Ref. Fig. 20	Which instrument shows the aircraft to be northwest of the VORTAC?
	OPCION A:	1.
OPCION B:	2.	
OPCION C:	3.	

PREG20080543	Ref. Fig. 20 Which instrument shows the aircraft in a position where a straight course after a 90° left turn would result in the aircraft intercepting the
	180 radial?

PREG20080542	Ref. Fig. 20 Which instrument shows the aircraft in a position where a 180° turn would result in the aircraft intercepting the 150 radial at a 30° angle?
OPCION A:	2.
OPCION B:	3.
OPCION C:	4.

PREG20080541	Ref. Fig. 20 Using instrument group 3, if the aircraft makes a 180° turn to the left and continues straight ahead, it will intercept which radial?
OPCION A:	135 radial. OPCION B:
OPCION C:	360 radial.
OPadial.	

PREG20080540	An aircraft 60 miles from a VOR station has a CDI indication of one- fifth deflection, this represents a course centerline deviation of approximately	B
OPCION A:	6 miles.	
OPCION B:	2 miles.	
OPCION C:	1 mile.	

| PREG20080538 | While maintaining a constant heading, a relative bearing of 10° doubles
 in 5 minutes. If the true airspeed is 105 knots, the time and distance to
 the station being used is approximately |
| :--- | :--- |\quad A

PREG20080518	Ref. Fig. 18 To intercept a magnetic bearing of 240° FROM at a 30° angle (while outbound), the airplane should be turned
OPCION A:	left 065°.
OPCION B:	left 125°.
OPCION C:	right 270°.

PREG20080489	If an airplane is consuming 12.5 gallons of fuel per hour at a cruising altitude of 8,500 feet and the groundspeed is 145 knots, how much fuel is required to travel 435 NM?
OPCION A:	27 gallons.
OPCION B:	34 gallons.
OPCION C:	38 gallons.

PREG20080517	Ref. Fig. 17 Which is true regarding illustration 4, if the present heading is maintained? The airplane will
OPCION A:	cross the 060 radial at a 15° angle.
OPCION B:	intercept the 240 radial at a 30° angle.
OPCION C:	cross the 180 radial at a 75° angle.

PREG20080495	You have flown 52 miles, are 6 miles off course, and have 118 miles yet to fly. To converge on your destination, the total correction angle would be	C
OPCION A:	3°.	
OPCION B:	6°.	
OPCION C:	10°.	

PREG20080496 GIVEN: C

Distance off course .. 9 mi Distance flown .. 95 mi Distance to fly 125 mi

To converge at the destination, the total correction angle would be
OPCION A: $\quad 4^{\circ}$.
OPCION B: 6°.
OPCION C: $\quad 10^{\circ}$.

PREG20080514	Ref. Fig. 17 Which statement is true regarding illustration 2, if the present heading is maintained? The airplane will
	A
OPCION A:	cross the 180 radial at a 45° angle outbound.
OPCION B:	intercept the 225 radial at a 45° angle.
OPCION C:	intercept the 360 radial at a 45° angle inbound.

PREG20080513 Ref Fig. 17
OPCION A: 6.

OPCION B: 4.
OPCION C: 5 .

PREG20080512 To track inbound on the 215 radial of a VOR station, the recommended C procedure is to set the OBS to
OPCION A: $\quad 215^{\circ}$ and make heading corrections toward the CDI needle.
OPCION B: $\quad 215^{\circ}$ and make heading corrections away from the CDI needle.
OPCION C: $\quad 035^{\circ}$ and make heading corrections toward the CDI needle.

| PREG20080511 | To track outbound on the 180 radial of a VOR station, the
 recommended procedure is to set the OBS to |
| :--- | :--- | :--- |
| OPCION A: | 360° and make heading corrections toward the CDI needle. |
| OPCION B: | 180° and make heading corrections away from the CDI needle. |
| OPCION C: | 180° and make heading corrections toward the CDI needle. |

PREG20080509	Ref. Fig. 16 At the position indicated by instrument group 1, to intercept the 330° magnetic bearing to the NDB at a 30° angle, the aircraft should be turned
OPCION A:	left to a heading of 270°.
OPCION B:	right to a heading of 330°.
OPCION C:	right to a heading of 360°.

PREG20080508	Ref. Fig. 16 At the position indicated by instrument group 1, what would be the relative bearing if the aircraft were turned to a magnetic heading of
	090° ?
OPCION A:	150°.
OPCION B:	190°.
OPCION C:	250°.

OPCION A: $\quad 030^{\circ}$.
OPCION B: $\quad 060^{\circ}$.
OPCION C: $\quad 240^{\circ}$.

PREG20080510	Which situation would result in reverse sensing of a VOR receiver?
OPCION A:	Flying a heading that is reciprocal to the bearing selected on the OBS.
OPCION B:	Setting the OBS to a bearing that is 90° from the bearing on which the aircraft is located.
OPCION C:	Failing to change the OBS from the selected inbound course to the outbound course after passing the station.

PREG20080506	If the relative bearing to a nondirectional radiobeacon is 045° and the magnetic heading is 355°, the magnetic bearing TO that radiobeacon would be
OPCION A: 040°.\quad A	
OPCION B:	065°.
OPCION C:	220°.

PREG20080501	For night flying operations, the best night vision is achieved when the:	B
OPCION A:	pupils of the eyes have become dilated in approximately 10 minutes	
OPCION B:	rods in the eyes have become adjusted to the darkness in approximately	
	coninutes	
OPCION C:	cones in the eyes have become adjusted to the darkness in aproximately	

PREG20080502	When operating VFR at night, what is the first indication of flying into restricted visibility conditions
OPCION A:	A gradual disappearence of lights on the ground
OPCION B:	Ground lights begin to take on an appearance of being surrounded by a halo or glow
OPCION C:	Cockpit lights begin to take on an appearance of a halo or glow around them

PREG20080500 An airplane departs an airport under the following conditions: B
\qquad
Cruising altitude .. 9,500 ft
Rate of climb .. $500 \mathrm{ft} / \mathrm{min}$
Average true airspeed .. 160 kts
True course ... 145°
Average wind velocity .. 080° at 15 kts
Variation ... $5^{\circ} \mathrm{E}$
Deviation ... 3°
Average fuel consumption ... $14 \mathrm{gal} / \mathrm{hr}$
Determine the approximate time, compass heading, distance, and fuel consumed during the climb.

OPCION A: $\quad 14$ minutes, $128^{\circ}, 35 \mathrm{NM}, 3.2$ gallons.
OPCION B: $\quad 16$ minutes, $132^{\circ}, 41 \mathrm{NM}, 3.7$ gallons.
OPCION C: 16 minutes, $128^{\circ}, 32 \mathrm{NM}, 3.8$ gallons.

PREG20080503	After experiencing a powerplant failure at night, one of the primary consdiderations should include:
OPCION A:	turning off all electrical switches to save battery power for landing
OPCION B:	Maneuvering to and landing on a lighted highway or road planning the emergency approach and landing to an unlighted portion of an area
OPCION C:	

PREG20080504	When planning for an emergency landing at night on of the primary considerations should include	C
OPCION A:	landing without flaps to ensure a nose - high landing attitude at touchdown turning off all the electrical switches to save battery power for the landing selecting a landing area close to public access, if possible	
OPCION B:		C
OPCION C:	The ADF is tuned to a radiobeacon. If the magnetic heading is 040 the relative bearing is 290°, the magnetic bearing TO that radiobeacon would be	C
PREG20080505		
OPCION A:	150°.	
OPCION B:	285°.	
OPCION C:	330°.	

PREG20080499 An airplane departs an airport under the following conditions: B
Airport elevation ... 1,000 ft
Cruise altitude .. 9,500 ft
Rate of climb .. $500 \mathrm{ft} / \mathrm{min}$
Average true airspeed .. 135 kts
True course .. 215°
Average wind velocity ... 290° at 20 kts
Variation .. $3^{\circ} \mathrm{W}$
Deviation .. -2°
Average fuel consumption ... $13 \mathrm{gal} / \mathrm{hr}$
Determine the approximate time, compass heading, distance, and fuel consumed during the climb.
OPCION A: $\quad 14$ minutes, $234^{\circ}, 26 \mathrm{NM}, 3.9$ gallons.
OPCION B: $\quad 17$ minutes, $224^{\circ}, 36 \mathrm{NM}, 3.7$ gallons.
OPCION C: $\quad 17$ minutes, $242^{\circ}, 31 \mathrm{NM}, 3.5$ gallons.

