TEMA: 0645

COD PREG:
PREG20098676

COM-RTC - Aircraft Performance - Chap. 8

PREGUNTA:		
(Refer to Figure 37)		
GIVEN:	WEIGHT	MOMENT
Gyroplane basic weight (oil included) 1,315 154.0		
Pilot weight ... 145?		
Passenger weight 153?		
27 gal fuel ... 162 ?		
The CG is located		
outside the CG envelope; the maximum gross weight is exceeded.		
outside the CG envelope; but the maximum gross weight is not exceeded.		
within the CG envelope; neither maxi weight moment is exceeded.	gross we	nor gross-

PREGUNTA:

RPTA:
(Refer to Figure 37)
WEIGHT MOMENT
Gyroplane basic weight (oil included) 1,315 154.0
Pilot weight .. 145 ?
Passenger weight 153?
27 gal fuel
162 ? CG located
OPCION A: outside the CG envelope; the maximum gross weight is exceeded.
OPCION B: outside the CG envelope; but the maximum gross weight is not exceeded.
OPCION C: within the CG envelope; neither maximum gross weight nor grossweight moment is exceeded.

PREG20098661 At higher elevation airports the pilot shoud know that indicated airspeed
OPCION A: will be unchanged, but groundspeed will be faster.
OPCION B: will be higher, but groundspeed will be unchanged.
OPCION C: should be increased to compensate for the thinner air.

PREG20098662	The performance tables of an aircraft for takeoff and climb are based on
OPCION A:	pressure/density altitude.
OPCION B:	cabin altitude
OPCION C:	true altitude

PREG20098663 What are the standard temperature and pressure values for sea level?
A
OPCION A: $\quad 15^{\circ} \mathrm{C}$ and $29.92^{\prime \prime} \mathrm{Hg}$.
OPCION B: $\quad 50^{\circ} \mathrm{F}$ and $1013.2^{\prime \prime} \mathrm{Hg}$.

OPCION C: $\quad 15^{\circ} \mathrm{C}$ and 29.92 Mb .

PREG20098664	(Refer to Figure 31). If the tower-reported surface wind is 010 crosswind component for a Rwy 08 landing?
OPCION A:	7 knots.
OPCION B:	15 knots.
OPCION C:	17 knots.

PREG20098665	(Refer to Figure 31).
	The surface wind is 180° at 25 knots. What is the crosswind component for a Rwy 13 landing?
OPCION A:	19 knots.
OPCION B:	21 knots.
OPCION C:	23 knots.

PREG20098667	When computing weight and balance, the empty weight includes the weight of the airframe, engine (s), and all items of operating equipment permanently installed. Empty weight also includes
OPCION A:	the unusable fuel, full operating fluids, and full oil. all usable fuel, maximum oil, hydraulic fluid, but does not include the weight of pilot, passengers, or baggage.
OPCION B:	all usable fuel and oil, but does not include any radio equipment or instruments that were installed by someone other than the manufacturer.
OPCION C:	

OPCION A: $\quad 7$ knots.
OPCION B: 13 knots.
OPCION C: 15 knots.

| PREG20098669 | The CG of an aircraft can be determined by which of the following |
| :--- | :--- | :--- |
| | methods? |\quad C

PREG20098670 The CG of an aircraft may be determined by B OPCION A: dividing total arms by total moments. OPCION B: dividing total moments by total weight.
OPCION C: multiplying total weight by total moments.

PREG20098671	GIVEN:
	Weight A: 155 pounds at 45 inches aft of datum Weight B: 165 pounds at 145 inches aft of datum Weight C: 95 pounds at 185 inches aft of datum Based on this information, where would the CG be located aft of datum?
OPCION A:	86.0 inches.
OPCION B:	116.80 inches.
OPCION C:	125.0 inches.

PREG20098672	GIVEN:
	Weight A: 140 pounds at 17 inches aft of datum Weight B: 120 pounds at 110 inches aft of datum Weight C: 85 pounds at 210 inches aft of datum Based on this information, the CG would be located how far aft of datum?
OPCION A:	89.11 inches.
OPCION B:	96.89 inches.
OPCION C:	106.92 inches.

PREG20098673	GIVEN:
	Weight A: 135 pounds at 15 inches aft of datum
	Weight B: 205 pounds at 117 inches aft of datum
	Weight C: 85 pounds at 195 inches aft of datum Based on this information, the CG would be located how far aft of datum?
OPCION A:	100.2 inches.
OPCION B:	109.0 inches.
OPCION C:	121.7 inches.

OPCION A: centerline of the main wheels.
OPCION B: \quad nose, or out in front of the airplane.

PREG20098684	(Refer to Figure 41)
	GIVEN:
	Helicopter gross weight $95^{\circ} \mathrm{F}$
	Ambient temperature
	Determine the in-ground effect hover ceiling.
OPCION A:	5,000 feet.
OPCION B:	5,250 feet.
OPCION C:	6,250 feet.

PREG20098683	(Refer to Figure 41)
	GIVEN:
	Helicopter gross weight7. $177^{\circ} \mathrm{F}$
	Ambient temperature
	Determine the in-ground effect hover ceiling.
OPCION A:	6,750 feet.
OPCION B:	7,250 feet.
OPCION C:	8,000 feet.

PREG20098680	A helicopter is loaded in such a manner that the CG is located aft of the aft allowable CG limit. Which is true about this situation?
OPCION A:	In case of an autorotation, sufficient aft cyclic control may not be available to flare properly.
OPCION B:	This condition would become more hazardous as fuel is consumed, if the main fuel tank is located aft of the rotor mast.
OPCION C:	If the helicopter should pitchup due to gusty winds during high-speed flight, there may not be sufficient forward cyclic control available to lower the nose.

PREG20098681	A helicopter is loaded in such a manner that the CG is located forward of the allowable CG limit. Which is true about this situation?
OPCION A:	This condition would become less hazardous as fuel is consumed if the main fuel tank is located aft of the rotor mast.
OPCION B:	In case of engine failure and the resulting autorotation, sufficient cyclic control may not be available to flare properly to land.
OPCION C:	Should the aircraft pitchup during cruise flight due to gusty winds, there may not be enough forward cyclic control available to lower the nose.

PREG20098679 GIVEN: C

OPCION A: $\quad 109.35{ }^{\prime \prime}$ and $-.04 "$
OPCION B: $\quad 110.43^{\prime \prime}$ and $+.02^{\prime \prime}$
OPCION C: $\quad 110.83$ " and $-.02^{\prime \prime}$

| PREG20098682 | With respect to using the weight information given in a typical aircraft
 owner's manual for computing gross weight, it is important toknow that
 if items have been installed in the aircraft in addition to the original |
| :--- | :--- |\quad A

PREG20098685	(Refer to Figure 41)
	GIVEN:
	Helicopter gross weight $1,275 \mathrm{lb}$
	Ambient temperature $9^{\circ} \mathrm{F}$
	Determine the in-ground effect hover ceiling.
OPCION A:	6,600 feet.
OPCION B:	7,900 feet.
OPCION C:	8,750 feet

PREG20098687	(Refer to Figure 42) Departure is planned for a flight from a heliport with a pressure altitude of 3,800 feet. What rate of climb could be expected in this helicopter during departure if the ambient temperature is $70^{\circ} \mathrm{F}$?
OPCION A:	$330 \mathrm{ft} / \mathrm{min}$.
OPCION B:	$360 \mathrm{ft} / \mathrm{min}$.
OPCION C:	$400 \mathrm{ft} / \mathrm{min}$.

PREG20098688	(Refer to Figure 43)	B
	GIVEN:	
	Ambient temperature $60^{\circ} \mathrm{F}$	
	Pressure altitude $2,000 \mathrm{ft}$	
	What is the rate of climb?	
OPCION A:	$480 \mathrm{ft} / \mathrm{min}$.	
OPCION B:	$515 \mathrm{ft} / \mathrm{min}$.	
OPCION C:	$540 \mathrm{ft} / \mathrm{min}$.	

PREG20098689 (Refer to Figure 43) B GIVEN:
Ambient temperature $80^{\circ} \mathrm{F}$
Pressure altitude $2,500 \mathrm{ft}$
What is the rate of climb?
OPCION A: $\quad 350 \mathrm{ft} / \mathrm{min}$.
OPCION B: $\quad 395 \mathrm{ft} / \mathrm{min}$.
OPCION C: $\quad 420 \mathrm{ft} / \mathrm{min}$.

PREG20098690	(Refer to Figure 44)
	GIVEN:
	Ambient temperature $40^{\circ} \mathrm{F}$
	Pressure altitude $1,000 \mathrm{ft}$
	What is the rate of climb?
OPCION A:	$810 \mathrm{ft} / \mathrm{min}$.
OPCION B:	$830 \mathrm{ft} / \mathrm{min}$.
OPCION C:	$860 \mathrm{ft} / \mathrm{min}$.

PREG20098691	(Refer to Figure 44)
	GIVEN:
	Ambient temperature .. F
	Pressure altitude 2,500 ft
	What is the rate of climb?
OPCION A:	$705 \mathrm{ft} / \mathrm{min}$.
OPCION B:	$630 \mathrm{ft} / \mathrm{min}$.
OPCION C:	$755 \mathrm{ft} / \mathrm{min}$.

PREG20098692	(Refer to Figures 45 and 46)
	GIVEN:
	Pressure altitude 4,000 ft
	Ambient temperature $80^{\circ} \mathrm{F}$
	To clear a 50-foot obstacle, a jump takeoff would require
OPCION A:	more distance than a running takeoff.
OPCION B:	less distance than a running takeoff.
OPCION C:	the same distance as a running takeoff.

PREG20098693 (Refer to Figures 45 and 46) C GIVEN:
Pressure altitude $4,000 \mathrm{ft}$
Ambient temperature $80^{\circ} \mathrm{F}$
The takeoff distance to clear a 50 -foot obstacle is
OPCION A: $\quad 1,225$ feet for a jump takeoff.
OPCION B: $\quad 1,440$ feet for a running takeoff.
OPCION C: less for a running takeoff than for a jump takeoff.

OPCION A: well aft of the aft CG limit.
OPCION B: within the CG envelope.
OPCION C: forward of the forward CG limit

PREG20098675	(Refer to Figure 37)
	GIVEN: WEIGHT MOMENT
	Gyroplane basic weight (oil included) 1,315150.1
	Pilot weight ... 140 ?
	Passenger weight 150 ?
	27 gal fuel ... 162 ?
	The CG is located
OPCION A:	outside the CG envelope; the maximum gross weight is exceeded.
OPCION B:	outside the CG envelope; the maximum gross weight and the grossweight moment are exceeded.
OPCION C:	within the CG envelope; neither maximum gross weight nor grossweight moment is exceeded.

